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1
SYSTEM AND METHOD FOR MOTION
DETECTION IN A SURVEILLANCE VIDEO

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a divisional of U.S. patent application
Ser.No. 12/765,199, filed Apr. 22,2010, and entitled “System
and Method for Motion Detection in a Surveillance Video,”
which claims priority to and the benefit of U.S. Provisional
Patent Application Ser. No. 61/171,710, filed Apr. 22, 2009,
and entitled “System and Method for Motion Detection in a
Surveillance Video,” all of which are incorporated herein by
reference in their entirety.

BACKGROUND

Disclosed embodiments relate to video monitoring and
interpretation by software-aided methodology, and more par-
ticularly, to a system and method for improving the utility of
video images in systems handling video, such as, for
example, for system-interpreted analysis of video images for
security purposes.

Video analytics is an industry term for the automated
extraction of information from video. Video analytic systems
can include a combination of imaging, computer vision and/
or machine intelligence applied to real-world problems. Its
utility spans several industry segments including video sur-
veillance, retail, and automation. Video analytics is distinct
from machine vision, machine inspection, and automotive
vision. Known applications of video analytics can include, for
example, detecting suspicious objects and activities for
improved security, license plate recognition, traffic analysis
for intelligent transportation systems, and customer counting
and queue management for retail applications. Advantages of
automated video surveillance systems include increased
effectiveness and lower cost compared to human-operated
systems.

Some known surveillance systems can accurately detect
changes in a scene. Changes in a scene lead to changes of
pixel values in a camera image. Scene changes can be induced
by global or local illumination changes (e.g. sun light, car
headlights, street lights), by environmental motion (e.g.
blowing debris, shaking trees, running water), or by moving
objects (e.g. moving people, cars, and pets). One of the chal-
lenging tasks of a surveillance system is to discriminate
changes caused by moving objects from illumination
changes.

Changes in pixel values for a given image can be computed
relative to pixel values in a reference image of the same scene.
A reference image, which can be referred to as a background
image, generally depicts motionless objects (e.g. buildings,
trees, light posts, roads, and parked cars) in a scene. To dis-
criminate changes caused by illumination and environmental
conditions (also called clutter motion) from changes caused
by moving foreground objects of interest (e.g., moving
objects), one known technique assumes that a small pixel
and/or illumination change in an image corresponds to static
objects, and a large pixel and/or illumination change in an
image corresponds to moving objects. A pixel and/or illumi-
nation difference threshold can be used to differentiate static
objects from moving objects. In a given scene, pixel differ-
ences below a threshold can be classified as static objects and
pixel differences above the threshold can be classified as
moving objects. Defining a threshold that accurately sepa-
rates moving objects from clutter and background motion can
be difficult. The more accurate the threshold, the greater the
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number of pixels corresponding to moving objects can be
detected. Such an assumption is often violated by drastic
and/or non-uniform illumination changes, such as regions of
brightness and regions having shadows resulting from, for
example, headlights or clouds, respectively. Pixel differences
associated with such regions can be large, and thus, the
regions are classified as moving objects rather than back-
ground. In addition to illumination change, large pixel difter-
ences can be associated with clutter motion (e.g. moving
leaves, moving water, fountains). Pixels corresponding to
clutter motion often do not correspond to objects of surveil-
lance interest. As such, it is desirable to exclude such regions
from the moving object detection.

Known systems can group pixels corresponding to moving
objects into blobs for analysis. During blob analysis, some
blobs can be rejected from consideration as moving objects
while other blobs can be passed to high level post processing
(e.g. recognition, classification). By employing moving
object detection, a surveillance system reacts immediately
with a lesser chance for a false alarm (i.e. the surveillance
system almost instantly detects a moving object and quickly
analyzes its behavior).

FIG. 1 illustrates the flow of moving object detection.
Collectively, these steps can be referred to as background
subtraction or background maintenance. The initial step can
be to build a background image, representing an observed
scene (e.g. by acquiring a frame of video input), at 100. This
step can be performed at startup. Steps 2-4 can be repeated for
each subsequent frame. The second step, for each “current”
frame, can be to determine illumination differences between
the current scene image and the background image (e.g.,
compute a background difference image), at 105. The third
step can be to filter out noise (e.g., illumination changes due
to static objects) in the background difference image using a
pixel difference threshold, at 110. The pixels can then be
grouped into blobs, at 115, and the blobs analyzed, at 120.
The background image can be updated with objects that are
deemed to be part of the background. Each step includes
algorithms of different complexity, and the performance of
moving object detection is dependent on the performance of
such algorithms. The ultimate goal of a background subtrac-
tion algorithm is to provide accurate moving object detection
while maintaining a low rate of false alarms from clutter or
illumination changes.

The performance of the background subtraction algorithm
can bound the performance and capabilities of a surveillance
system because downstream processing such as recognition
and classification depend on the quality and accuracy of
blobs. Therefore, there is a constant demand for improving
the performance of the background subtraction algorithm.
Background subtraction is a key step for moving object detec-
tion in the presence of either static or dynamic backgrounds.
To understand what occurs in a scene, the background sub-
traction algorithm can be used jointly with object tracking,
recognition, classification, behavior analysis, and statistical
data collection. Background subtraction is suitable for any
application in which background removal is a guide for both
reducing the search space and detecting regions of interest for
further processing.

Many known approaches to background subtraction
include modeling the color value of each background pixel by
a Gaussian I(x, y)=N (u(x, y),Z(X, y)) The parameters of the
Gaussian distribution are determined from a sequence of
consecutive frames. Once the background model is built, a
likelihood function is used to decide whether a pixel value of
a current frame corresponds to the Gaussian model, N(u(x,

Y).Z(X.Y))-
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Another approach uses a mixture of Gaussians to model
color pixel values in outdoor scenes. Another approach uses
not only color information but spatial information as well.
That is, each pixel of a current frame is matched to both the
corresponding pixel in the background image and pixels
neighboring the corresponding pixel. Another approach uses
a three-component system: the first component predicts pixel
value in a current frame, the second component fills in homo-
geneous regions of foreground objects, and the third compo-
nent detects sudden global changes. Yet another approach
aggregates the color and texture information for small image
blocks.

Existing techniques use a mathematical model for the
background or foreground blobs using scene statistics. How-
ever, they fail to address some challenges that occur in real-
world usage. In many scenes, the assumption that a pixel
value can be modeled by a Gaussian distribution is only true
part of the time, which makes it difficult to build a robust
algorithm. Additionally, the temporal updating of the back-
ground image or model is an unsolved issue that can instantly
and drastically decrease the performance of the whole sys-
tem. Accordingly, improvement is still required to comple-
ment existing algorithms. Some drawbacks of various known
approaches are identified below in connection with real-
world situations.

Pixel Difference Thresholding

The illumination of outdoor scenes cannot easily be con-
trolled. Accordingly, the pixel difference between an image
and its corresponding background image cannot be modeled
robustly (i.e. the values of the background image can fluctuate
drastically, chaotically and non-uniformly). Shadows, glares,
reflections and the nature of object surfaces are examples of
factors that can cause unpredictable behavior of pixel values
and, as such, the pixel difference. Observing that pixel difter-
ences corresponding to groups of pixels behave more predict-
ably and/or less chaotically, models were developed to cal-
culate pixel differences by considering groups of pixels
around a particular pixel. Such models assume that a pixel
difference calculated using spatially close pixels behave more
predictably than differences calculated using individual pix-
els. Although spatial modeling of a pixel difference provides
some improvement, clutter motion (e.g., moving leaves on
trees) remains a problem when values of the grouped pixels
change both simultaneously and unpredictably. As a conse-
quence, clutter motion regions can be identified as moving
objects and can cause a surveillance system to generate false
alarms.

Clutter Motion

One known solution for eliminating illumination changes
caused by clutter motion regions is based on complex mod-
eling of a background image. Multiple models, rather than a
single model, can be used. Complex modeling assumes that
the pixel value may fluctuate around several average values.
Theoretically, the assumption is quite valid and indeed imi-
tates real life scenarios. One or more thresholds can be
applied to the difference between current and average pixel
values. However, complex modeling can be sensitive to
weather conditions (e.g. snow, rain, wind gusts), and the
required processing power makes its implementation imprac-
tical due to the need for continuous moving object detection
at a high frame rate. Complex modeling relies on continuous
moving object detection and the accurate updating of indi-
vidual models, which depends on the natural environment
and specifics of the surveillance scene. Accordingly, statistics
of a pixel model of the background image are updated after
each input frame has been processed. An error in updating the
background image or model directly affects the pixel differ-
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4

ence threshold, and problems related to illumination change
can accordingly reappear. One solution is to manually mask
out the clutter motion regions, which results in the system
failing to detect objects in the masked-out regions. However,
artifacts of video compression (e.g., blockiness and ringing)
can raise problems similar to those caused by clutter motion
regions. Hence, manual masking is frequently not an accept-
able solution.

Choosing a Threshold

Applying thresholds to pixel differences between an image
and a corresponding background discards pixels assumed to
be in the background. Once the pixels are discarded from the
process (i.e., pixels are classified as background pixels), it can
be difficult to re-classify them as object pixels. Moreover,
estimating and updating the threshold value can be difficult.
In some systems, for example, thresholds depend on the spe-
cifics of the surveillance scene, and hence, require tuning
during the installation phase. Additionally, different thresh-
olds can be used for different parts of the scene. Such tuning
increases the cost of installation without guaranteeing high
performance in an uncontrolled outdoor environment. Tuning
may require a human to manually re-tune the system under
unpredictable weather conditions. The process of choosing
thresholds is unpredictable and depends strongly on aspects
of'background modeling. In systems based on Gaussian mod-
eling, the threshold is uniform and constant for the entire
scene. However, in some outdoor scenes each pixel cannot be
modeled and updated using the same parametric model.

There is therefore a need to improve the performance of
background subtraction so that it is robust to global and local
illumination change, clutter motion, and is able to reliably
update the background image/model.

SUMMARY

A foreground object’s motion can occlude edges corre-
sponding to background objects and can induce motion of the
edges corresponding to foreground objects. These edges pro-
vide strong cues for the detection of foreground objects.
Human object perception analyzes object edges to determine
the object’s contour, location, size and three-dimensional
(3D) orientation. Once the object contours are analyzed, inner
object edges can be analyzed to assist in understanding the
object’s structure. Similar to human perception, a surveil-
lance system can prioritize the analysis of an object’s edges.
As such, the surveillance system can analyze edge informa-
tion first and then analyze the finer grained appearance inside
the object boundaries.

The proposed approach utilizes techniques for non-linear
weighting, edge detection and automatic threshold updating.
Non-linear weighting facilitates the discrimination of pixel
differences owing to illumination from changes induced by
object motion. Edge detection is performed by a modified
Laplacian of Gaussian filter, which preserves the strength of
edges. Any edge detection algorithm that does not convert a
grayscale (or color) image into a binary image but instead
preserves the edge strength maybe used in the proposed
approach. Such an edge detection algorithm can be used to
localize motion in the image. Automatic threshold updating
can keep the background current and can react quickly to
localized illumination changes in both space and time.

Disclosed embodiments for moving object detection can
include separating true and false moving object detections,
edge detection, and the automatic updating of thresholds. In
addition to Gaussian smoothing, disclosed embodiments can
include automatic non-linear weighting of pixel differences.
Non-linear weighting does not depend on the specifics of a
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surveillance scene. Additionally, non-linear weighting sig-
nificantly separates pixel differences corresponding to static
objects and pixel differences induced by moving objects.
Benefits of non-linear weighting include suppressing noise
with a large standard of deviation, simplifying the choice of
threshold values, and allowing longer periods of time
between the updating of pixel values of the background
image. A standard technique, based on a Laplacian of Gaus-
sian (LoG) filter to detect edges can be modified such that the
strength of edges is preserved in a non-binary image. Non-
linear weighting together with the modified edge detection
technique can accurately discriminate edges of moving
objects from edges induced by illumination change, clutter
motion, and video compression artifacts. Further, two thresh-
olds can be used for each edge image of pixel differences to
increase the accuracy in moving object detection. These
threshold values can be updated automatically. The threshold
updating mechanism does not depend on specifics of a sur-
veillance scene, time of day, or weather conditions and is
directly controlled by a pixel difference. The edge detection
of moving objects allows preservation of pixels correspond-
ing to low illumination change and eliminates pixels corre-
sponding to high illumination change.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating the flow of moving object
detection.

FIG. 2 is a flow chart illustrating a method for moving
object detection, according to an embodiment.

FIGS. 3A and 3B show a non-smoothed and smoothed
image, respectively.

FIG. 4A shows a smoothed background image.

FIG. 4B shows a smoothed subsequent image of the same
scene as in FIG. 4A.

FIG. 5A illustrates an absolute Altitude Image Difference
between the images of FIGS. 4A and 4B.

FIG. 5B illustrates the application of a universal threshold
to the image of FIG. 5A.

FIGS. 6A and 6B show the image of FIG. 5A smoothed
with a Gaussian kernel using two different values for sigma.

FIG. 7A shows an image produced by multiplying the pixel
values of the images of FIGS. 5A and 6A.

FIG. 7B shows an image produced by convolution of the
image of FIG. 7A using a Laplacian of Gaussian kernel.

FIG. 8 illustrates a convolution using a Laplacian of Gaus-
sian kernel.

FIGS. 9A and 9B show images produced by the application
of a low threshold and a high threshold, respectively, to the
image of FIG. 7B.

FIG. 10A shows an image produced by the combination of
FIGS. 9A and 9B.

FIG. 10B shows an image produced by filling the blobs in
the image of FIG. 10A.

FIGS. 11A and 11B show values of an adaptive Current
Low and High Threshold, respectively, for each pixel in an
image.

FIGS. 12A and 12B show values of an adaptive Base Low
and High Threshold, respectively, for each pixel in an image.

FIGS. 13-16 compare the application of the GMM method
and a method according to a disclosed embodiment to four
sets of images.

DETAILED DESCRIPTION

Disclosed embodiments may be used in systems and
schemes for video handling, motion segmentation, moving
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object detection, moving object classification, moving object
recognition, analysis of changes in video or still images,
understanding a surveillance scene or regions of interest in a
video or sequence of still images, video synchronization
based on detection of similar motion or changes in different
videos or sequences of images. Disclosed embodiments may
be used for improving the utility of video images in various
kinds of systems that use video, such as, for example, sys-
tems-interpreted analysis of video images for security pur-
poses, object detection, classification and recognition, analy-
sis of changes in the video or still images, understanding
surveillance scenes or regions of interest in video or
sequences of images, video synchronization based on motion
or detecting similar changes in video captured by different
cameras. For example, in the PERCEPTRAK system, a video
security system, video scenes can be captured and then seg-
mented according to the presence of objects or subjects of
interest, such as persons or vehicles.

As used herein, foreground objects can be any structure or
any portion of a structure of a target of interest in a scene. In
some embodiments, for example, a foreground object can be
a human, an animal, a human-made good, a structure, a
vehicle and/or the like.

FIG. 2 is a flow chart illustrating an embodiment of a
moving object detection method. Steps 200 and 205 involve
smoothing an image. Smoothing suppresses noise by enforc-
ing the constraint that a pixel should look like its neighbors.
Image smoothing is the process of replacing a pixel value
with a weighted average value of its neighboring pixels. The
Gaussian kernel is used as a model for smoothing noise
caused by small illumination change. See e.g., D. A. Forsyth
and J. Ponce, Computer Vision: A Modern Approach, the
disclosure of which is incorporated herein by reference. The
standard of deviation (sigma) of a Gaussian kernel controls
the degree of smoothing. In some embodiments, an image can
be smoothed with two Gaussian kernels of the same size with
different values of the standard of deviation, sigma. In other
embodiments, any other method to smooth the image can be
used.

FIGS. 3A and 3B show a non-smoothed and smoothed
image, respectively, with the sharpness of the smoothed
image in FIG. 3B being less than the sharpness of the non-
smoothed image in FIG. 3A. Image smoothing is also used in
step 215, as described in further detail herein.

As shown in FIG. 2, the first step in the disclosed back-
ground subtraction method is to initialize the background. In
step 200, an input frame is smoothed with a Gaussian kernel
using an appropriate value for the standard of deviation
(sigma), s1, to produce an initial background image, also
referred to as the Altitude Background Image or AltBackIm.
The image resolution can be either modified or preserved. In
one embodiment, the very first frame is considered to be a
background image. FIG. 4A shows an example of a smoothed
background image, AltBackIm.

In step 205 a current frame or image is obtained and
smoothed. The current frame can be smoothed with the Gaus-
sian kernel with an appropriate value of sigma, s2. In some
embodiments, the value of sigma s2 can be the same as the
value of sigma s1. In other embodiments, sigma s2 can have
a value different from the value of sigma s1. The smoothed
image can be denoted as CurlmSmoothed. An example of a
smoothed current image is shown in FIG. 4B, which shows
the same scene as in FIG. 4A, but includes a car moving
through the scene.

Next, in step 210 of FIG. 2, the difference between the
background image and the current image is calculated. Simi-
larly stated, the value of each pixel in the background image
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is subtracted from the value of a corresponding pixel (i.e., a
pixel in the same location and/or with the same coordinate
value) in the current image. In some embodiments, this dif-
ference is an absolute Altitude Image Difference, or AID,
between AltBacklm (e.g., FIG. 4A) and CurlmSmoothed
(e.g., FIG. 4B). An example of an AID, based on the images
shown in FIGS. 4A and 4B, is shown in FIG. 5A. At this step,
applying a threshold to the AID does not effectively differen-
tiate true changes from false ones. Because the Euclidian
distances between true and false differences are very small, it
is difficult to separate true detections from false ones. This is
illustrated in FIG. 5B, which shows foreground pixels after
applying a fixed threshold to all pixels of the AID (FIG. 5A).
Besides pixels corresponding to the moving car, some back-
ground pixels were also detected as foreground. Any resulting
image of such algebraic operations, which include at least the
algebraic difference between the background image and any
given image, should be considered as one of the forms of AID
contemplated by this disclosure.

In step 215 of FIG. 2, the AID is smoothed with the Gaus-
sian kernel using two different values for sigma, s3 and s4. In
some embodiments, the value of sigma s3 and/or the value of
sigma s4 can be the same as the value of sigma s1 and/or the
value of sigma s2. In other embodiments, sigma s3 and/or
sigma s4 can have a value different from the value of sigma s1
and/or the value of sigma s2. The resulting images are
denoted as AID_smoothedl and AID_smoothed2, respec-
tively. In addition to spatial smoothing of the difference
image, this step emulates temporal smoothing. In general, a
real moving object corresponds to a blob in the background
difference with relatively high pixel difterence values distrib-
uted across the entire blob. In contrast, only a small portion of
a falsely detected blob has relatively high pixel difference
values. Smoothing the background difference disperses the
noise of high pixel differences among neighboring pixels
with lower values and reduces the false detection rate.
Smoothing parameters control the blob contour and size of
the blob to be detected. FIGS. 6A and 6B show the AID of
FIG. 5A smoothed with s1 and s2, respectively, where sl is
less than s2. In other embodiments, any type of image
smoothing can be used.

In step 220 of FIG. 2, the value of each pixel of the
AID_smoothed1 is multiplied by the value of'a corresponding
pixel (i.e., a pixel in the same location and/or with the same
coordinate value) of the AID_smoothed2. The product of the
multiplication can be denoted as AAID, or Amplified Altitude
Image Difference. The multiplication of AID_smoothedl by
AID_smoothed?2 is an automatic non-linear weighting of the
background image difference. Compared to the non-
weighted AID, the Euclidian distances between true and false
changes in AAID are non-linearly (e.g., exponentially)
increased, and can therefore be easily separated. Such a non-
linear weighting can be characterized by:

AAID(,7)=AID_smoothed__1(i,/)*AID_
smoothed2(i,f),

where 1 and j are pixel coordinates.

In general, the AAID can be obtained using any non-linear
function:

AAID(,/)=f(AID(,/),

where f is a non-linear function.

Computing the AAID transforms the AID into a different
domain, in which the high background differences corre-
sponding to false motion detections are better separated from
high background differences corresponding to real objects.
Although computing AID_smoothed1 and AID_smoothed2
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improves the AAID, in other embodiments, the AAID image
can be defined directly using values of the AID.

FIG. 7A shows the AAID produced by the multiplication of
the AID_smoothedl of FIG. 6A and the AID_smoothed2 of
FIG. 6B. As can be seen in FIG. 7A, the pixels corresponding
to the moving car are very distinct from the dark background
pixels. In other embodiments, any suitable approach can be
used to calculate the AAID. For example, the AAID can be
calculated by a) multiplying each pixel of the AID with a
corresponding pixel of the AID_smoothed2 (or AID_
smoothed1); b) applying a non-linear function, a combination
of non-linear functions, or a combination of linear and non-
linear functions to each pixel of the AID, transformed AID, or
modified AID; and/or ¢) applying a linear/non-linear combi-
nation of the AID and transformed/modified AID.

Next, in step 225 of FIG. 2, the AAID is convolved with a
Laplacian of Gaussian (LoG) kernel using an appropriate
sigma. For each pixel, the zero crossings in all possible direc-
tions are first determined and then an absolute difference for
each zero crossing is calculated. The differences can be
summed and stored as a pixel value in an image denoted
LoG_Im. In contrast to known Laplacian of Gaussian-based
edge detectors, in which zero crossings are converted into
binary values (i.e. a zero or one), in the disclosed embodi-
ment, the values corresponding to zero crossings are pre-
served (i.e. the edge strength is preserved) to define a non-
binary edge image. Accordingly, various edge detection
techniques can be applied at this stage to define the non-
binary edge image. Using non-binary edge detection assists
the transformation of the AID from the AAID into the
LoG_Im, in which threshold tests can be applied to edge
strength. In some embodiments, there is no need to associate
the edges in LoG_Im and the edges in AltBackIm to filter out
the weak edges. Moreover, in some embodiments, no asso-
ciation or difference between the edges in LoG_Im and the
edges in AltBackIm is used to detect and/or remove constant
change in the background (clutter motion), detect moving
objects during non-global illumination changes and/or during
a relatively long interval between background updates.
Accordingly, in such embodiments, the edges need not be
detected in the background or reference images (e.g., Alt-
Backlm). The LoG_Im can be stored in a DeltaDif buffer,
which contains the last frames of LoG_Im (NumDifFrames).
The size of the DeltaDif buffer can be defined by the avail-
ability of memory.

The DeltaDif buffer can also be used in updating a thresh-
old in step 245, as described in further detail herein. In some
embodiments, the background can be updated during a period
of little activity when the system has a high confidence that
the pixels are background pixels. Such background updating
can be a higher priority task than an immediate reaction to a
background change.

In other embodiments, any other edge detection method,
which does not produce a resulting binary image, applied to
non-linearly weighted image can be used instead of a Lapla-
cian of Gaussian-based edge detector.

An example of the convolution of step 225 is illustrated in
FIG. 8. The input, X, is a 9 pixel region. The kernel is applied
to produce the 9 pixel output, Y. The calculation of the value
of the [0,0] pixel of the output Y is shown in Equation 1,
below.

y[0, 0] = X{=1, =17« A[1, 1] +x[0, =11 % A[0, 1] + Equation 1

AL, =17%A[=1, 1]+ x[~1, O]« A[L, O] +
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-continued
%[0, 0] #A[0, 0] + x[1, 0]« A[=1, 0] +

x[-1, 11%A[1, =17+ x[0, 1]« A[0, —1] +
x[1, 1]1%A[-1, -1]

=0%1+0%2+0%1+0%0+1%0+2x0+0=
(=D +4%(=2)+5%(=1)

=-13

An example of the effect of the convolution is shown in
FIG. 7B, inwhich the LoG convolution is applied to the image
of FIG. 7A. As can be seen in FIG. 7B, sharp edges corre-
spond to moving objects, while edges corresponding to the
water spray cloud behind the car are much less sharp.

In general, real moving objects define long, solid, bold
and/or strong edges, while false detections define short,
dashed, and/or weak edges (see e.g., FIG. 9A). A real moving
object defines strong connected and non-connected edges in
LoG_Im. The number of pixels corresponding to the strong
edges and used in the object detection, controls the detection
sensitivity and can vary based on the application. To filter out
weak edges, low and high threshold tests can be applied to
LoG_Im, at 230.

The low threshold, LowThreshold, preserves the true
changes in the background but does not eliminate all false
deviations. The high threshold, HighThreshold, also pre-
serves the true changes while completely or significantly
eliminating false changes. Pixels that pass the high threshold
test indicate true foreground blobs that also passed the low
threshold test. The pixels passed through LowThreshold are
stored in LoG_Im_IThresh, and pixels passed through
HighThreshold are stored in LoG_Im_HThresh. Similarly
stated, pixels having a value greater than or equal to HighT-
hreshold are stored in LoG_Im_HThresh while pixels having
a value less than HighThreshold are not stored in LoG_
Im_HThresh (e.g., their pixel locations are set to zero). Pixels
having a value less than HighThreshold can be said to be
removed from LoG_Im_HThresh. Similarly, pixels having a
value greater than or equal to LowThreshold are stored in
LoG_Im_I'Thresh while pixels having a value less than
LowThreshold are not stored in LoG_Im_LThresh (e.g., their
pixel locations are set to zero). Pixels having a value less than
LowThreshold can be said to be removed from LoG_
Im_LThresh. This two-component step removes noise in
moving object detections. An example of the effect of the
thresholding is illustrated in FIGS. 9A and 9B, in which the
low threshold and the high threshold, respectively, are applied
to the LoG_IM image of FIG. 7B. FIG. 9B depicts edges
corresponding to moving objects while eliminating edges
corresponding to the water cloud.

Next, in step 235 of F1G. 2, foreground pixels are identified
by comparing the pixel values at pixel locations in LoG_
Im_HThresh with the pixel values at corresponding pixel
locations (i.e., a pixel location in the same location and/or
with the same coordinate value) in LoG_Im_LThresh. Ini-
tially, the pixel locations having values greater than zero in
both LoG_Im_HThresh and LoG_Im_IL'Thresh are classified
as foreground pixels (e.g., are preserved). Similarly stated,
each pixel location having a value greater than both the
HighThreshold (i.e., pixel is stored in LoG_Im_HThresh) and
the LowThreshold (i.e., pixel is stored in LoG_Im_HThresh)
is classified as a foreground pixel.

Additionally, the value of any pixel connected and/or con-
tiguous to the pixels in both LoG_Im_HThresh and LoG_
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Im_LThresh (i.e., those pixels initially classified as fore-
ground pixels) are preserved. Similarly stated, if a pixel loca-
tion is initially classified as a foreground pixel, any pixel
within LoG_Im_I'Thresh and contiguous to the pixel location
viaatleastone other pixel in LoG_Im_IThresh is classified as
a foreground object. For example, if a pixel at a first pixel
location having coordinates (row 1, column 1) is in both
LoG_Im_HThresh and LoG_Im_LThresh (i.e., is initially
classified as a foreground pixel), a pixel at a second pixel
location having coordinates (row 1, column 4) and not in
LoG_Im_HThresh but in LoG_Im_I Thresh can be classified
as a foreground object if a pixel at (row 1, column 2) and a
pixel at (row 1, column 3) are both in LoG_Im_I'Thresh. The
pixel at the second pixel location can be said to be contiguous
and/or connected to the pixel at the first pixel location. In
other embodiments, pixels in LoG_Im_LThresh but not in
LoG_Im_HThresh within a given distance (e.g., a certain
number of pixels) of a pixel in both LoG_Im_HThresh and
LoG_Im_IThresh can be classified as foreground pixels even
if they are not contiguous with the pixel in both LoG_Im_
HThresh and LoG_Im_LThresh.

Connected and/or contiguous pixels in LoG_Im_LThresh
and LoG_Im_HThresh can be grouped into blobs. Similarly
stated, pixels from LoG_Im_HThresh vote for foreground
blobs in LoG_Im_LThresh. Any blob in LoG_Im_LThresh,
which has at least one vote (e.g., at least one pixel in LoG_
Im_HThresh), will be preserved as a foreground blob. These
foreground pixels create a new image, LoG_Im_Thresh. In
other words, a single pixel in LoG_Im_HThresh is enough to
classify an entire blob in LoG_Im_IThresh as a foreground
blob. This is illustrated in FIG. 10A, based on the images of
FIGS. 9A and 9B. This voting scheme can eliminate pixels
corresponding to large illumination differences (e.g., changes
their value to zero).

Next, in step 240 of FIG. 2, foreground object segmenta-
tion is completed. The LoG_Im_Thresh image (FIG. 10A)
stores the foreground blobs. The non-zero pixels in
LoG_Im_Thresh indicate corresponding pixels in AID_
smoothed2 (FIG. 6B) to be processed for filling in the fore-
ground blobs. Each row of the indicated foreground blob in
AID_smoothed2 is scanned to find a minimum value,
LocalThresh. A pixel in that row is considered a foreground
pixel if its value is greater than LocalThresh. LocalThresh is
a dynamic value, and thus, provides sensitive detection of
foreground pixels in AID_smoothed2 around corresponding
foreground blobs in LoG_Im_Thresh (FIG. 10A) and low
false alarm rate in the rest of AID_smoothed2. The resulting
foreground pixels represent the final result of moving object
segmentation, and the final foreground pixel segmentation is
denoted as SegImBin. An example is shown in FIG. 10B,
which is based on the LoG_Im_Thresh image of FIG. 10A.

In step 245 of FIG. 2, the HighThreshold value is updated.
The sensitivity of moving object detection is determined by
the HighThreshold, the value of which strongly depends on
image brightness and the background difference of each
pixel, see FIG. 11. Low contrast video and scene illumination
require a lower value. For high quality moving object detec-
tion, HighThreshold cannot be fixed and must be adjusted for
each pixel at each time instant. Once SeglmBin (FIG. 10B) is
computed, HighThreshold values for remaining pixels are
updated using the following rules:

TmpVal[i]fj]=max(InitialHighThresholdValue,

adaptation_rate*AID_smoothed2/i//]) Equation 2
HighThreshold=min(HighThreshold+HT_Delta,
TmpVal[i]/j],MaxHighThresholdValue) Equation 3
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For each pixel at index [i][j], a temporary value TmpVal[i]
[j] is computed based on Equation 2. InitialHighThreshold-
Value is a fixed number for all pixels, for all scenes and
adaptation_rate is also a fixed value that controls the speed of
change of the HighThreshold. A new HighThreshold is com-
puted next by Equation 3, which is the minimum of three
numbers. These are a) the current HighThreshold plus
HT_Delta, where HT_Delta is the maximum allowed change
to the HighThreshold per frame, b) TmpVal [i][j] computed
earlier by Equation 2 and c¢) a fixed number MaxHighThresh-
oldValue.

The value for MaxHighThreshold can be set sufficiently
high such that no non-moving object will be detected. The
above two rules gradually increase the value of HighThresh-
old, and immediately reset the value to InitialHighThreshold-
Value, if the pixel difference between the background image
and the current image is below InitialHighThresholdValue. In
other embodiments the HighThreshold value can be reset to
InitialHighThresholdValue gradually over multiple frames.
This step is automatic and expands the application of the
disclosed method to different environmental conditions.

In other embodiments, both the LowThreshold and the
HighThreshold can be updated. By updating both the
LowThreshold and the HighThreshold at each input frame,
less frequent background image updates can be used. In some
embodiments, for example, the background image can be
updated approximately every 2500 frames under non-global
illumination change (rain, snow, moving tree branches, mov-
ing shadows, etc.) and every 10000 frames under smooth
global illumination change under 30 frames per second (fps)
video capturing speed. In such embodiments, no feedback
from a high level post background difference processing
moduleisused (e.g., tracking, scene learning and understand-
ing, analyzing structure of the background scene, moving
object classification, etc.). Accordingly, the method acts as a
standalone background subtraction method.

Once SeglmBin (FIG. 10B) is computed, a foreground
binary mask, ForegroundMask, can be computed. In some
embodiments, ForegroundMask is the same as SeglmBin. In
other embodiments, ForegroundMask is any binary image in
which an area of a foreground blob is expanded and/or
dilated. HiThreshCur and LoThreshCur are selectively
updated for pixels, which are indicated as background pixels
(e.g., zeros) in ForegroundMask. HistoryThreshUpdate is a
counter of how many frames a pixel was detected as a back-
ground pixel (e.g., zero). If a pixel is detected as a foreground
pixel (e.g., one), the pixel counter is reset to zero. If a pixel is
detected as a background pixel for a number of predetermined
frames (NumDifFrames) or more, then its HiThreshCur and
LoThreshCur can be updated.

For each foreground pixel of SeglmBin, the pixel counter
of HistoryThreshUpdate is reset. Additionally, for each back-
ground pixel, the pixel counter of HistoryThreshUpdate is
incremented by one or any other suitable amount. Pixels
whose counter is greater than or equal to NumDifFrames are
classified as BckgrAdjPixels. HistoryThreshUpdate directly
controls a minimum waiting period (e.g., a number of frames,
an amount of time, etc.) for maintaining confidence that a
pixel should be classified as a background pixel.

For BckgrAdjPixels pixels, LoThreshBase and HiThresh-
Base are updated using the following equations:

LoThreshBase(BckgrAdjPixels)=median(DeltaDif

(BckgrAdjPixels))+lo_delta Equation 4
HiThreshBase(BckgrAdjPixels)=median(DeltaDif
(BckgrAdjPixels))+hi_delta Equation 5
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LoThreshBase and HiThreshBase define the lowest pos-
sible values of LowThreshold and HighThreshold, respec-
tively, at which noise can be separated from real moving
objects. The LoThreshBase and HiThreshBase are the default
values used for optimum detection of real moving objects.
Further reducing these values can cause more noise and false
detections.

For pixels whose values are in ForegroundMask, the cur-
rent low and high threshold (LoThreshCur and HiThreshold-
Cur), are set to the corresponding values in LoThreshBase
and HiThreshBase, respectively. Thus, for a portion of the
image in which a moving object was detected, the threshold
values (LoThreshCur and HiThresholdCur) are reset to the
base values (LoThreshBase and HiThreshBase) to provide
optimum moving object segmentation.

For BckgrAdjPixels pixels, LoThreshCur and HiThresh-
Cur can be updated using the following equations:

LoThreshCur(BckgrAdjPixels)=min(max(LoThresh-
Cur(BckgrAdjPixels)-lo_delta_decr, DeltaDif
(BckgrAdjPixels)+lo_delta_incr),MaxLoThresh

(BckgrAdjPixels)) Equation 6

HiThreshCur(BckgrAdjPixels)=min(max(HiThresh-
Cur(BckgrAdjPixels)-hi_delta_decr, max
(DeltaDif(BckgrAdjPixels))+hi_delta_incr),Max-

HiThresh(BckgrAdjPixels)) Equation 7

Accordingly, for pixels, detected as background pixels, the
current threshold values are either increased or decreased,
according to the current background image difference. Thus,
rules gradually increase or decrease the current threshold
values. Gradual increases and/or decreases of the low thresh-
old are controlled by lo_delta_incr and lo_delta_decr, respec-
tively. Similarly, gradual increases and/or decreases of the
high threshold are controlled by hi_delta_incr and hi_del-
ta_decr, respectively. MaxLoThresh and MaxHiThresh are
maximum values for the LoThreshCur and HiThreshCur,
respectively. Similarly stated, as depicted in Equations 6 and
7, LoThreshCur and HiThreshCur will not have values
greater than MaxLoThresh and MaxHiThresh, respectively.

In some embodiments, updating the high threshold and low
threshold is fully automatic and expands the application of the
background subtraction method to various environmental
conditions. The values of the low and high threshold depend
onimage brightness and background difference of each pixel.
FIGS. 11A and 11B, for example, illustrate the current low
and high threshold for a frame of an image with respect to a
background image. FIGS. 12A and 12B show the base low
and high values at the frame of the image.

EXAMPLES

The following examples illustrate the improved perfor-
mance of the disclosed method as compared to the improved
GMM (Gaussian Mixture Models) technique described in Z.
Zivkovic, Improved adaptive Gaussian mixture model for
background subtraction. International Conference Pattern
Recognition, UK, August, 2004 and 7. Zivkovic and F. van
der Heijden, Efficient Adaptive Density Estimation per Image
Pixel for the Task of Background Subtraction. Pattern Rec-
ognition Letters, vol. 27, no. 7, pages 773-780, 2006, the
disclosure of which is incorporated herein by reference.

The challenge presented by the examples below is to detect
moving objects with a minimum number of false foreground
detections under different illumination and weather condi-
tions without any manual system tuning. In other words, for
all tests, all parameters of both algorithms were fixed. Fre-
quent updating of the background model in GMM reduces
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false foreground detection. However, the frequent updating
causes holes inside of moving objects and makes it difficult to
detect objects that remained in the scene. In the GMM
method, a sharp and sudden change in the background is
quickly dissolved into a new background but causes an
increase in false foreground detections.

Four examples are illustrated, by FIGS. 13, 14, 15 and 16,
respectively. In each figure, the first column (on the left)
shows the original input frames; the second column shows the
GMM results with white pixels corresponding to detected
foreground pixels; the third column shows results by the
method disclosed above with white pixels corresponding to
detected foreground pixels; and the fourth column shows the
adapted high threshold as a grayscale image, with brighter
pixels indicating a higher value for HighThreshold In each
example, the disclosed method performs better than the
GMM method.

Example 1

In the first example, illustrated in FIG. 13, a painting is
removed from a wall, an event that is desired to be detected.
The first, second, third, fourth and fifth rows show results
corresponding to frames numbered 6600, 6684, 6687, 6690
and 6693, respectively. Using the GMM method, the trash
bucket is merged with the background (column 2), and the
absence of the painting is merged into the background (row 5,
column 2). In contrast, the presence of trash bucket and the
absence of the painting are preserved in the results using the
disclosed method (column 3). The individual values of the
high threshold preserve detection of foreground objects while
eliminating shadows on the wall and floor.

Example 2

In the second example, illustrated in FIG. 14, a van
approaches a region under surveillance. While the van is
parked, a person leaves the van and drops a box on the ground.
The first, second, third, fourth and fifth rows show results
corresponding to frames numbered 5619, 5627, 5635, 5643
and 5649, respectively. Using the GMM algorithm, the van is
merged with the background and is invisible in all frames in
the second column GMM takes approximately 30 frames (1
second in real time) to merge a dropped box with the back-
ground model. In contrast to GMM, the disclosed method
(column 3) preserved the parked van and the dropped box as
foreground objects. The last column shows the different val-
ues of the high threshold computed continuously from frame
1. The bright satellite antennas caused large illumination
noise (right top corner of the image), which are eliminated by
the high adaptive threshold.

Example 3

In the third example, illustrated in FIG. 15, a car moves
towards the camera. The first, second, third, fourth and fifth
rows show results corresponding to frames numbered 560,
570, 580, 590 and 600, respectively. The amount of light
reflecting from the car’s surface increases as the car moves
toward the camera. The reflecting light causes a change in the
camera iris which in turn causes all pixel values of the camera
image to change. Such a change increases the number of false
foreground detections. Compared to column 2, the false fore-
ground detections, which are illustrated in column 3, do not
occupy the whole image and are grouped in distinct objects.
The fourth column illustrates a gradual automatic increase of
the high threshold. The large shadow area caused by van is
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visible in each frame (column 1). The adaptive high threshold
used by the disclosed method completely suppresses the
shadow (column 3).

Example 4

In the fourth example, illustrated in FIG. 16, background
subtraction results using the GMM are compared to the dis-
closed method in a scene during a rainstorm. The first, second,
third, fourth and fifth rows show results corresponding to
frames numbered 4366, 4367, 4368, 4375 and 4471, respec-
tively. The first three rows illustrate results during a flash of
lightning. The fourth row illustrates the result of another flash
of lightning occurring just after the first one. The last row
shows moving car detection while a rain drop falls very close
to the camera lens and with the wind causing clutter motion of
the tree branches. During the flashes of lightning, the dis-
closed method did not detect any pixels as foreground (rows
2,3,4 and column 3). The moving car is detected better by the
disclosed method than by the GMM method (row 5). The wet
road and tree leaves are more sensitive to illumination and
caused more false foreground detections (column 2). The
adaptive high threshold eliminated all false detections and
preserved the real foreground object (column 3). The second
row shows the moment of lightning. The GMM is very sen-
sitive to sudden illumination change, and almost the whole
image was detected as a moving object. The proposed algo-
rithm is very robust to this type of illumination change.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Where methods described
above indicate certain events occurring in certain order, the
ordering of certain events may be modified. Additionally,
certain of the events may be performed concurrently in a
parallel process when possible, as well as performed sequen-
tially as described above.

Some embodiments described herein relate to a computer
storage product with a computer-readable medium (also can
be referred to as a processor-readable medium) having
instructions or computer code thereon for performing various
computer-implemented operations. The media and computer
code (also can be referred to as code) may be those designed
and constructed for the specific purpose or purposes.
Examples of computer-readable media include, but are not
limited to: magnetic storage media such as hard disks, floppy
disks, and magnetic tape; optical storage media such as Com-
pact Disc/Digital Video Discs (CD/DVDs), Compact Disc-
Read Only Memories (CD-ROMs), and holographic devices;
magneto-optical storage media such as optical disks; carrier
wave signal processing modules; and hardware devices that
are specially configured to store and execute program code,
such as Application-Specific Integrated Circuits (ASICs),
Programmable Logic Devices (PLDs), and Read-Only
Memory (ROM) and Random-Access Memory (RAM)
devices.

Examples of computer code include, but are not limited to,
micro-code or micro-instructions, machine instructions, such
as produced by a compiler, code used to produce a web
service, and files containing higher-level instructions that are
executed by a computer using an interpreter. For example,
embodiments may be implemented using Java, C++, or other
programming languages (e.g., object-oriented programming
languages) and development tools. Additional examples of
computer code include, but are not limited to, control signals,
encrypted code, and compressed code.

While various embodiments have been described above, it
should be understood that they have been presented by way of
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example only, not limitation, and various changes in form and
details may be made. Any portion of the apparatus and/or
methods described herein may be combined in any combina-
tion, except mutually exclusive combinations. The embodi-
ments described herein can include various combinations
and/or sub-combinations of the functions, components and/or
features of the different embodiments described.

What is claimed is:

1. A non-transitory processor-readable medium storing
code representing instructions to be executed by a processor,
the code comprising code to cause the processor to:

receive video data having a plurality of pixels;

classify each pixel from the plurality of pixels associated

with an image as a foreground pixel or a background
pixel using a threshold from a plurality of first thresholds
and associated with that pixel, and a threshold from a
plurality of second thresholds and associated with that
pixel;

reset a value of a first threshold from the plurality of first

thresholds associated with a first pixel from the plurality
of pixels to a default first threshold value, the first pixel
being classified as a foreground pixel;

update a value of a second threshold from the plurality of

first thresholds associated with a second pixel from the
plurality of pixels, the second pixel being classified as a
background pixel, a first counter configured to count the
number of successive frames the second pixel is classi-
fied as a background pixel having a value greater than a
counter threshold; and

incrementing a second counter configured to count the

number of successive frames a third pixel from the plu-
rality of pixels is classified as a background pixel, the
third pixel being classified as a background pixel, the
second counter having a value less than the counter
threshold, a third threshold from the plurality of first
thresholds associated with the third pixel maintaining its
value.

2. The non-transitory processor-readable medium of claim
1, further comprising code to cause the processor to:

reset a value of the threshold from the plurality of second

thresholds associated with the first pixel from the plu-
rality of pixels to a default second threshold value.

3. The non-transitory processor-readable medium of claim
1, further comprising code to cause the processor to:

reset a value of a first threshold from the plurality of second

thresholds associated with the first pixel to a default
second threshold value; and

update a value of a second threshold from the plurality of

second thresholds associated with the second pixel.
4. The non-transitory processor-readable medium of claim
1, wherein the code to cause the processor to update the value
of the second threshold from the plurality of first thresholds
includes code to cause the processor to update the value of the
second threshold based on a brightness of the second pixel
and a background difference of the second pixel.
5. The non-transitory processor-readable medium of claim
1, wherein the image is a convoluted difference image, the
code further comprising code to cause the processor to:
subtract pixel values of a background image of a scene
from corresponding pixel values of a smoothed image of
the scene to produce an altitude difference image;

weight each pixel value of the altitude difference image to
produce a weighted difference image; and

convolve the weighted difference image to produce the

convoluted difference image.

6. The non-transitory processor-readable medium of claim
1, wherein the value of the first threshold from the plurality of
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first thresholds is greater than a value of a threshold from the
plurality of second thresholds associated with the first pixel.

7. The non-transitory processor-readable medium of claim
1, wherein the default first threshold value is associated with
the first pixel, the code further comprising code to cause the
processor to:

update a default first threshold value associated with the

second pixel; and

maintain a default first threshold value associated with the

third pixel.

8. A non-transitory processor-readable medium storing
code representing instructions to be executed by a processor,
the code comprising code to cause the processor to:

receive video data having a plurality of pixels;

classify each pixel from the plurality of pixels associated

with an image as a foreground pixel or a background
pixel using a low threshold from a plurality of low
thresholds and associated with that pixel, and a high
threshold from a plurality of high thresholds and asso-
ciated with that pixel;

reset a value of the low threshold from the plurality of low

thresholds and associated with a first pixel from the
plurality of pixels to a predetermined low threshold
value when the first pixel is classified as a foreground
pixel; and

update (1) a value of the low threshold from the plurality of

low thresholds and associated with a second pixel from
the plurality of pixels, and (2) a value of the high thresh-
old from the plurality of high thresholds and associated
with the second pixel, when the second pixel is classified
as a background pixel for a number of successive frames
greater than a predetermined counter threshold.

9. The non-transitory processor-readable medium of claim
8, the code further comprising code to cause the processor to:

reset a value of the high threshold from the plurality of high

thresholds and associated with the first pixel from the
plurality of pixels to a predetermined high threshold
value.
10. The non-transitory processor-readable medium of
claim 8, wherein the code to cause the processor to reset the
value of the low threshold associated with the first pixel
includes code to cause the processor to reset the value of the
low threshold associated with the first pixel based on at least
one of a brightness of the first pixel or a background differ-
ence of the first pixel.
11. The non-transitory processor-readable medium of
claim 8, wherein the code to cause the processor to update the
value of the low threshold associated with the second pixel
includes code to cause the processor to update the value of the
low threshold associated with the second pixel based on at
least one of a brightness of the second pixel or a background
difference of the second pixel.
12. The non-transitory processor-readable medium of
claim 8, wherein the image is a convoluted difference image,
the code further comprising code to cause the processor to:
subtract pixel values of a background image of a scene
from corresponding pixel values of a smoothed image of
the scene to produce an altitude difference image;

weight each pixel value of the altitude difference image to
produce a weighted difference image; and

convolve the weighted difference image to produce the

convoluted difference image.

13. The non-transitory processor-readable medium of
claim 8, the code further comprising code to cause the pro-
cessor to:

maintain a value of a low threshold from the plurality of

low thresholds and associated with a third pixel from the
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plurality of pixels when the third pixel is classified as a
background pixel for a number of successive frames less
than or equal to the predetermined counter threshold.

14. A non-transitory processor-readable medium storing
code representing instructions to be executed by a processor,
the code comprising code to cause the processor to:

receive video data having a plurality of pixels;

classify, at a first time a pixel from the plurality of pixels

associated with an image as a background pixel, the
pixel being associated with a threshold from a plurality
of first thresholds and a threshold from a plurality of
second thresholds;

update at least one of a value of the threshold from the

plurality of first thresholds or a value of the threshold
from the plurality of second thresholds when the pixel is
classified as a background pixel for a number of succes-
sive frames that is greater than a value of a counter
threshold;

classify, at a second time after the first time, the pixel as a

foreground pixel; and

reset, in response to the pixel being classified as a fore-

ground pixel, at least one of the value of the threshold
from the plurality of first thresholds to a predetermined
first threshold value or the value of the threshold from
the plurality of second thresholds to a predetermined
second threshold value.

15. The non-transitory processor-readable medium of
claim 14, wherein the pixel is a first pixel, the threshold from
the plurality of first thresholds is a first threshold from the
plurality of first thresholds, the threshold from the plurality of
second thresholds is a first threshold from the plurality of
second thresholds, the code further comprising code to cause
the processor to:

classify a second pixel from the plurality of pixels as a

foreground pixel, the second pixel being associated with
a second threshold from the plurality of first thresholds
and a second threshold from the plurality of second
thresholds; and

reset at least one of (1) a value of the second threshold from

the plurality of first thresholds to the predetermined first
threshold value, or (2) a value of the second threshold
from the plurality of second thresholds to the predeter-
mined second threshold value.

16. The non-transitory processor-readable medium of
claim 14, wherein the code to cause the processor to update at
least one of the value of the threshold from the plurality of first
thresholds or the value of the threshold from the plurality of
second thresholds includes code to cause the processor to
update at least one of the value of the threshold from the
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plurality of first thresholds or the value of the threshold from
the plurality of second thresholds based on a brightness of the
pixel and a background difference of the pixel.
17. The non-transitory processor-readable medium of
claim 14, wherein the image is a convoluted difference image,
the code further comprising code to cause the processor to:
subtract pixel values of a background image of a scene
from corresponding pixel values of a smoothed image of
the scene to produce an altitude difference image;

weight each pixel value of the altitude difference image to
produce a weighted difference image; and

convolve the weighted difference image to produce the

convoluted difference image.

18. The non-transitory processor-readable medium of
claim 14, wherein the pixel is a first pixel, the threshold from
the plurality of first thresholds is a first threshold from the
plurality of first thresholds, the threshold from the plurality of
second thresholds is a first threshold from the plurality of
second thresholds, the code further comprising code to cause
the processor to:

update at least one of a value of a second threshold from the

plurality of first threshold values and associated with a
second pixel from the plurality of pixels or a value of a
second threshold value from the plurality of second
threshold values and associated with the second pixel
when the second pixel is classified as a background pixel
for anumber of successive frames that is greater than the
value of the counter threshold; and

maintain at least one of a value of a third threshold from the

plurality of first threshold values and associated with a
third pixel from the plurality of pixels or a value of a
third threshold from the plurality of second threshold
values and associated with the third pixel when the third
pixel is classified as a background pixel for a number of
successive frames that s less than or equal to the value of
the counter threshold.

19. The non-transitory processor-readable medium of
claim 14, wherein the code to cause the processor to classify
the pixel as a background pixel includes code to cause the
processor to classify the pixel as a background pixel at a first
time, the code further comprising code to cause the processor
to:

classify, at a second time after the first time, the pixel as a

foreground pixel; and

reset, in response to the pixel being classified as a fore-

ground pixel, a counter configured to count the number
of successive frames the pixel is classified as a back-
ground pixel, to a predetermined counter value.

#* #* #* #* #*
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